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We derive two expansions of the Randles–Sevcik function
√
πχ(x): an asymptotic expan-

sion of
√
πχ(x) for x → ∞ and its Taylor expansion at anyx0 ∈ R. These expansions are

accompanied by error bounds for the remainder at any order of the approximation.
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1. Introduction

The Randles–Sevcik function
√
πχ(x) arises in electrochemistry. This function

characterizes the dependence of electric current on cell voltage under certain electrol-
ysis conditions [1–3]. Several authors have investigated its analytical properties and
different methods for computation, see for example [4–9]. Reinmouth gave a rapidly
convergent series for

√
πχ(x) which permits its evaluation for negative values ofx [9].

However, the chemically interesting region is contained in the positive real axis. The re-
gion x � 1.1 is particularly interesting because this function has a relatively steep peak
there [4,8]. In order to approximate

√
πχ(x) in this region, Oldham, by using Weyl

fractional calculus, provided a series reformulation of the Randles–Sevcik function on
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the whole real axis [8,10]:

√
πχ(x) =

(
π

2

)1/2 ∞∑
n=1

γn(x), x ∈ R, (1)

whereγn(x) = β−3
n (βn − x)1/2(βn + 2x), βn = (x2 + b2

n)
1/2 andbn = (2n − 1)π .

But the convergence of Oldham’s series is extremely slow [7]. More recently, Lether
has obtained a integral representation of the Randles–Sevcik function from which he has
derived a two-parameter expansion of

√
πχ(x) valid ∀x ∈ R [7]. This expansion has

the form
√
πχ(x) = SN(x)+ EN,K(x), (2)

whereSN is theN th partial sum of (1) andEN,K is an error correction term given by

EN,K(x) ≡
K∑
k=0

dk
(
x2 + 4N2π2

)−(k+1/4)
sin

((
2k + 1

2

)
θN + π

4

)
,

whereθN ≡ tan−1(x/2Nπ) and the coefficientsdk are defined in terms of Bernoulli
numbers and the gamma function:

dk ≡ 2
(
1− 22k−1

)
B2kπ

2k−1�(2k + 1/2)

(2k)! .

Moreover, Lether presents a method for selecting appropriate values ofN andK for
computing

√
πχ(x) to a specified number of decimal digits of accuracy.

However, complete asymptotic expansions including error bounds of
√
πχ(x) are

not fully investigated. The purpose of this paper is to obtain an asymptotic expansions
of
√
πχ(x) for largex and its Taylor expansion at any pointx0 ∈ R, in particular at

x0 = 1.1. These expansions are derived in section 2. We obtain there easy algorithms
to compute the coefficients of the expansions as well as error bounds at any order of the
approximation. They are derived by using the ideas of Watson’s lemma [11, chapter 1].
We compare our expansion with Lether’s expansion and give numerical examples in
section 3.

2. A Taylor expansion and an asymptotic expansion

The starting point is the integral representation [7]:

π1/2χ(x) =
∫ ∞

0
t1/2 cschπt sin

(
xt + π

4

)
dt. (3)

Using the exponential representation of the csch and sin functions, we can write this
integral as

π1/2χ(x) = 2�
{

eiπ/4
∫ ∞

0

t1/2

eπt − e−πt
eitx dt

}
. (4)
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Then, expansions ofπ1/2χ(x) follow immediately from expansions of the Fourier trans-
form of the functiont1/2/(eπt − e−πt ):∫ ∞

0

t1/2

eπt − e−πt
eitx dt. (5)

Theorem 1. Forn = 1,2,3, . . . , the Taylor expansion of the integral (5) atx0, conver-
gent for|x − x0| < π , is given by

∫ ∞
0

t1/2eitx

eπt − e−πt
dt =

n−1∑
k=0

ik�(k + 3/2)

k!(2π)k+3/2
ζ

(
k + 3

2
,

1

2
− i

2π
x0

)
(x − x0)

k

+Rn(x0, x), (6)

whereζ(z, a) is the Hurwitz zeta-function. The remainder term is bounded by

∣∣Rn(x0, x)
∣∣ � �(n+ 3/2)ζ(n + 3/2)

n!πn+3/2
|x − x0|n, (7)

whereζ(z) is the Riemann zeta-function.

Proof. We write (5) in the form:∫ ∞
0

t1/2eitx0

eπt − e−πt
eit (x−x0) dt (8)

and consider the Taylor expansion of the exponential function at the origin:

eit (x−x0) =
n−1∑
k=0

[it (x − x0)]k
k! + rn(t, x − x0). (9)

Introducing this expansion in (8), interchanging sum and integral and using the
integral representation of the Hurwitz zeta-function [12, section 2.2.1, p. 46] we obtain
(6) with

Rn(x0, x) ≡
∫ ∞

0

t1/2eitx0

eπt − e−πt
rn(t, x − x0)dt.

To derive (7), consider the explicit expression given by the Lagrange form for the re-
mainderrn(t, x − x0) of the Taylor expansion (9):

rn(t, x − x0) = eiξ

n!
[
it (x − x0)

]n
, ξ ∈ (0, t (x − x0)

)
, n = 1,2,3, . . . .

Therefore|rn(t, x − x0)| � tn|x − x0|n/n!, and

∣∣Rn(x0, x)
∣∣ � 1

n!
∫ ∞

0

tn+1/2

eπt − e−πt
dt|x − x0|n.

Using that eπt − e−πt � eπt − 1 ∀t � 0 and [13, equation (23.2.7)] we obtain (7).�
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Corollary 1. For |x| < π ,

χ(x) = 1

2π2

∞∑
k=0

(−1)[k/2]

k!(2π)k
(
2k+3/2− 1

)
�

(
k + 3

2

)
ζ

(
k + 3

2

)
xk. (10)

Proof. Setx0 = 0 in (6) and use (4) and [13, equation (23.2.20)]. �

Theorem 2. Forn = 2,3, . . . , an asymptotic expansion of the integral (5) forx →∞
is given by

∫ ∞
0

t1/2

eπt − e−πt
eitx dt = 1

2
√
π(π − ix)1/2

+
√
π

4(π − ix)3/2

+
n−1∑
k=1

(2π)2k−1B2k�(2k + 1/2)

(2k)!(π − ix)2k+1/2
+ Rn(x). (11)

The remainder term verifies

∣∣Rn(x)∣∣ �
{

4

(
1+ 2

3(22n−1 − 1)

)[
�

(
2n + 1

2

)
− �

(
2n+ 1

2
, π |π − ix|

)]

+C
(

2

π

√
π2+ x2

)2n

�

(
2n+ 1

2
, π |π − ix|

)}
1

|π − ix|2n+1/2
, (12)

whereC is a bound of|w/(ew − 1)| in the regionW ≡ {w ∈ C, |w − t (π − ix)| <
π2/
√
π2+ x2, 0 � t < ∞} (see figure 1(a)). A possible value forC is given in [14,

equation (16)].

Proof. From (5),
∫ ∞

0

t1/2

eπt − e−πt
eitx dt = 1

2π

∫ ∞
0
t−1/2 (−2πt)

e−2πt − 1
e−(π−ix)t dt. (13)

Consider the Taylor expansion [13, equation (23.1.1)],

−2πt

e−2πt − 1
= 1+ πt +

n−1∑
k=1

B2k

(2k)!(2πt)
2k + rn(t), n = 1,2,4,6,8, . . . , (14)

wherern(t) = O(t2n) whent → 0+ andn = 2,4,6,8, . . . . Introducing this expansion
into the second integral in (13) and interchanging sum and integral we obtain (11) with

Rn(x) ≡ 1

2π

∫ ∞
0
t−1/2rn(t)e

−(π−ix)t dt.
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Figure 1. (a) The regionW introduced in theorem 2. It is comprised by the complex points located at

a distance< π2/
√
π2+ x2 from the half straight[0,∞(π − ix)). (b) From (14), the complex function

rn((π− ix)−1w) of the variablew is analytic and bounded in the half plane|Arg(w)−Arg(π− ix)| < π/2,
in particular in the shaded region of figure (b). Then, we can replace the integration pathu by the integration

patht .

After the change of variablet → u/(π − ix) we obtain

Rn(x) = 1

2π(π − ix)1/2

∫ ∞(π−ix)

0
u−1/2rn

(
u

π − ix

)
e−u du.

The integrand is an analytic function ofu in the sector|Arg(u) − Arg(π − ix)| < π/2
and is exponentially small whenu→∞ with Arg(π − ix) < Arg(u) < 0. Then, using
the Cauchy residua theorem, we can shift the integration contour from[0,∞(π − ix))
to [0,∞) (see figure 1(b)):

Rn(x) = 1

2π(π − ix)1/2

∫ ∞
0
t−1/2rn

(
t

π − ix
)

e−t dt.

Therefore,

∣∣Rn(x)∣∣ � 1

2π |π − ix|1/2
∫ ∞

0
t−1/2

∣∣∣∣rn
(

t

π − ix

)∣∣∣∣e−t dt.
Dividing the above integral at the pointt = π |π − ix| and using the bound forrn(w)
given in [14, equation (14)] in the first integral, and the bound forrn(w) given in [14,
equation (15)] in the second integral, we obtain (12). �

3. Numerical experiments and conclusions

Tables 1 and 2 show numerical experiments about the accuracy of the approxima-
tions and error bounds supplied by theorems 1 and 2. In these tables, the second column
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Table 1
Approximation supplied by (6) atx0 = 1 and error bound given by (7).

1st order Relative Rel. error 2nd order Relative Rel. error
x π1/2χ(x) approx. error bound approx. error bound

1.1 0.446291 0.445725 0.0013 0.04 0.446784 0.001 0.0014
1.01 0.445826 0.445725 2.0 e−4 0.004 0.44583 1.0 e−5 1.4 e−5
1.001 0.445735 0.445725 2.0 e−5 0.00038 0.445735 1.3 e−7 1.4 e−7
1.0001 0.445726 0.445725 2.4 e−6 3.8 e−5 0.445726 1.0 e−9 1.4 e−9
1.00001 0.445725 0.445725 2.4 e−7 3.8 e−6 0.445725 1.0 e−11 1.4 e−11

Table 2
Approximations supplied by (11) and error bound given by (12).

1st order Relative Rel. error 2nd order Relative Rel. error
x π1/2χ(x) approx. error bound approx. error bound

50 −7.757 e−4 7.74 e−4 0.002 0.004 −7.757 e−4 2.0 e−5 4.0 e−5
100 −1.3869 e−4 −1.386 e−4 5.7 e−4 1.0 e−3 −1.3869 e−4 1.3 e−6 2.7 e−6
500 −2.489859 e−7 −2.489802 e−7 2.3 e−5 4.7 e−5 −2.489859 e−7 2.0 e−9 4.0 e−9

1000 −4.401985 e−8 −4.4019597 e−8 5.7 e−6 1.0 e−5 −4.401985 e−8 1.3 e−10 2.7 e−10
5000 −7.874793 e−10 −7.874791 e−10 2.3 e−7 4.7 e−7 −7.874793 e−10 2.e−13 4.0 e−13

Table 3
The first three lines compare the approximations, forx � 1, supplied by the expansion (6) withx0 = 1 and
n = 2 and the expansion (2) withN = 2 andK = 0. The last three lines compare the approximations, for

largex, supplied by the expansion (11) withn = 1 and the expansion (2) withN = 1 andK = 0.

Theorems 1, 2 Relative Lether’s Relative
x π1/2χ(x) approx. error approx. error

1.1 0.44629094 0.44678382 0.001 0.44622851 0.00014
1.01 0.4458258 0.44583082 1.0 e−5 0.44576409 0.000138
1.001 0.44573548 0.44573553 1.0 e−7 0.44567384 0.000138

100 0.05642592 0.05641896 0.0005 0.05641908 0.00012
1000 0.01784126 0.01784124 5.0 e−6 0.01784124 1.2 e−6
10000 0.00564189 0.00564189 5.0 e−8 0.00564189 1.2 e−8

represents the value ofπ1/2χ(x). The third and sixth columns represent, respectively,
a first and a second order approximation given by the corresponding theorem. Fourth
and seventh columns represent the respective relative errors|Rn(x0, x)/(π

1/2χ(x))|
or |Rn(x)/(π1/2χ(x))|. Fifth and last columns represent the respective relative error
bounds given by the corresponding theorem.

In table 3 we compare the expansions given in theorems 1 and 2 with Lether’s ex-
pansions forK = 0. We observe that Lether’s expansion and the expansions given in
theorems 1 or 2 offer approximately the same accuracy for a given CPU time of computa-
tion (theorem 1 is slightly more accurate). And conversely, to get a prescribed accuracy,
Lether’s expansion and the expansions given in theorems 1 or 2 needs approximately the



C. Ferreira et al. / Two algorithms for computing 137

same CPU time. The advantages of the expansions given in theorems 1 or 2 are more
analytical than computational. Expansions (6) and (11) have both a very simple ana-
lytical form in terms of powers of the variablex with coefficients being very important
and well-known special functions. But more important, both have an essential property
for an expansion: they are asymptotic expansions in the respective regionsx → x0 and
x → ∞. Moreover, both expansions (6) and (11) are accompanied by error bounds at
any order of the approximation.
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